
text.editing User’s Manual

Copyright c© 2023, 2024 Jan Moringen

i

Table of Contents

1 Introduction . 1

2 Concepts . 2
2.1 Units . 4

2.1.1 Built-in Units . 5

3 External Protocols . 8
3.1 Detach Protocol . 8
3.2 Unit Protocol . 8
3.3 Site Protocols . 8

3.3.1 Insertion Stack Protocol . 9
3.3.2 Preferred Column Protocol . 10
3.3.3 Operation History Protocol . 10
3.3.4 Site Protocol . 11

3.4 Buffer Protocols . 11
3.4.1 Primary Site Protocol . 11
3.4.2 Multiple Sites Protocol . 12

3.5 Operation Protocol . 13
3.6 Movement and Editing Protocol . 14

3.6.1 Motion Operations . 14
3.6.2 Insertion Operations . 14
3.6.3 Deletion Operations . 15
3.6.4 Items Functions . 15
3.6.5 Marking Operations . 15
3.6.6 Copy and Yank Operations . 17
3.6.7 Case Changing Operations . 17
3.6.8 Transposing Operations . 17
3.6.9 Filling Operations . 18
3.6.10 Commenting Operations . 18
3.6.11 Operations on Delimiter Pairs . 18

4 Search . 23
4.1 Search Concepts . 23
4.2 Search Dictionary . 24

4.2.1 Search Conditions . 24
4.2.2 Search State Protocol . 24
4.2.3 Match Protocol . 26
4.2.4 Site Search State Protocol . 26
4.2.5 Buffer Search State Protocol . 27
4.2.6 Ordinary Search Operations . 27
4.2.7 Incremental Search Operations . 27

ii

5 Expressions . 30
5.1 Expressions Concepts . 30
5.2 Expressions Dictionary . 31

5.2.1 Expression Conditions . 31
5.2.2 Expression Node Protocol . 31
5.2.3 Expression Tree Protocol . 32
5.2.4 Expression Operations . 33

6 Equivalent Emacs Commands 38
6.1 Motion . 38
6.2 Deletion . 38
6.3 Marking . 39
6.4 Transformation . 39
6.5 Structure Editing . 40

Concept index . 42

Function and macro and variable and type index . . 43

1

1 Introduction

The text.editing library provides protocols and implementations of those protocols for text
editing operations which are required by, for example, text editors or commandline proces-
sors (like REPLs). Some of the concepts and naming used in this library are inspired by
Emacs but the functionality should be generic enough to be build other kinds of Editors
as well. This library relies on the Cluffer library (https://github.com/Robert-Strandh/
cluffer) for the fundamental concepts of buffers, lines and cursors.

The functionality provided by this library includes:

• Section 3.6.1 [Motion Operations], page 14, (by various “[term-unit], page 3”)

• Section 3.6.2 [Insertion Operations], page 14, and Section 3.6.3 [Deletion Operations],
page 15, (by various “units”)

• Transformations like [Generic-Function text.editing|change-case], page 17, or [Generic-
Function text.editing|transpose], page 17,

• Chapter 5 [Expressions], page 30, and other Section 3.6.11 [Operations on Delimiter
Pairs], page 18, (like paredit for Emacs (https://paredit.org/))

• Undo (work in progress)

• Section 3.6.6 [Copy and Yank Operations], page 17,

• Section 3.4.2 [Multiple Sites Protocol], page 12,

• Chapter 4 [Search], page 23,

• Abbreviations (work in progress)

The text.editing library does not provide:

• Data structures for editor buffers (the Cluffer library (https://github.com/
robert-strandh/cluffer) does that)

• Input handling or a command processor (This aspect obviously heavily depends on
the application and there are many ways to do it. McCLIM (https://codeberg.
org/McCLIM/McCLIM) is one library which provides both input handling and command
processing.)

• Advance parsing (the Incrementalist library (https://github.com/robert-strandh/
incrementalist) does that)

• Syntax highlighting

• Presentation/rendering/display functions for the contents of text buffers (Like com-
mand processing, this aspect heavily depends on the application it. Again, McCLIM
(https://codeberg.org/McCLIM/McCLIM) is one library that could be used.)

https://github.com/Robert-Strandh/cluffer
https://github.com/Robert-Strandh/cluffer
https://paredit.org/
https://github.com/robert-strandh/cluffer
https://github.com/robert-strandh/cluffer
https://codeberg.org/McCLIM/McCLIM
https://codeberg.org/McCLIM/McCLIM
https://github.com/robert-strandh/incrementalist
https://github.com/robert-strandh/incrementalist
https://codeberg.org/McCLIM/McCLIM
https://codeberg.org/McCLIM/McCLIM

2

2 Concepts

This section defines a few concepts that are important for the text.editing library and
describes how they related to each other. The following figure illustrates some of the
concepts and their relations:

Buffer

Cursor Cursor

#\a #\b #\c #\d

Line 0

#\e #\f #\g #\h

Line 1

Cursor Cursor

#\i #\j #\k #\l

Line 2

Site

Insertion Stack

Mark Stack

provided by cluffer Site

Point

Top Mark

Mark

Mark

Point

Site

Insertion Stack

Mark Stack

Top Mark

Mark

Mark

Point

Additional sites

...

Addtional Sites

Figure 2.1: Examples of important concepts and their relations for a single buffer.

Buffer

A buffer is conceptually a sequence of lines, each of which contains a sequence
of items and zero or more attached cursors.

The text.editing library does not provide an implementation of the buffer con-
cept or associated protocols. Instead, it uses the protocols and classes provided
by the Cluffer library. It does, however, provide mixin classes like 〈undefined〉
[Class text.editing|multiple-site-mixin], page 〈undefined〉, that are intended to
be used in user-defined buffer classes.

Cursor

A cursor is an object that is attached to a buffer line before the first item, after
the last item or between two adjacent items.

Some cursors like the distinguished [term-point], page 3, and [term-mark],
page 3, cursors are visible to and controlled by the user while others are used
programmatically. Editing [term-operation], page 3, generally accept one or
more cursor arguments to indicate to which location or region of the buffer the
operation should be applied.

Chapter 2: Concepts 3

The text.editing library does not provide an implementation of the cursor con-
cept or associated protocols. Instead, it uses the protocols and classes provided
by the Cluffer library.

Point

The point is a distinguished cursor within each [term-site], page 3, which speci-
fies the buffer location at which the next editing [term-operation], page 3, issued
by a user will be performed.

Mark

The mark is a distinguished cursor within each [term-site], page 3, that has
multiple purposes:

• Mark cursors can be used to save buffer locations and return to them later.

• Together with the [term-point], page 3, cursor, the mark cursor can spec-
ify a region within the buffer on which [term-operation], page 3, can be
performed.

The mark cursor of a site can be either active or inactive.

Operation

An operation changes the buffer content and/or state of [term-site], page 3, in
a particular way, usually depending on the values of one or more parameters.

For example, the [Generic-Function text.editing|move], page 14, operation
changes the buffer positions of the point cursors of all sites according to the
specified unit and direction arguments.

Region

If a [term-site], page 3, has an active [term-mark], page 3, cursor, the sequence
of items between the [term-point], page 3, cursor and the mark cursor forms
the region. [term-operation], page 3, can be performed on the region using the
[unit-region], page 6, [term-unit], page 3. The specified sequence of items is the
same regardless of which of the two cursors is closer to the beginning of the
buffer.

Unit

Units are a way to designate particular sub-sequences of the sequence of all
items in a buffer, often relative to the [term-point], page 3, cursor. For ex-
ample, the [unit-word], page 6, unit refers to a sequence of non-whitespace,
non-punctuation characters that follow (or precede depending on the specified
direction) the point cursor.

Site

A site ties together pieces of data that are required for performing consecutive
editing [term-operation], page 3, around a specific “location”, or site, in a buffer.
The most important piece of data is the [term-point], page 3, cursor which
makes precise the notion of a buffer “location”. Other pieces of data include
the Section 3.3.2 [Preferred Column Protocol], page 10, of the point cursor,
an optional [term-mark], page 3, cursor, a [term-mark-stack], page 4, and an
[term-insertion-stack], page 4.

Chapter 2: Concepts 4

The main reason for storing this data in a dedicated site object instead of
directly in a buffer is the possibility of allowing simultaneous editing at multiple
sites in a buffer. From the perspective of an editor user, each site would typically
appear as a cursor (with its own point, mark, insertion stack, etc.) which would
generally act as if it were the only cursor in the buffer (disregarding effects that
arise from sites being too close together or overlapping).

Each buffer has exactly one primary site and zero or more secondary sites.
Secondary sites are added and removed by 〈undefined〉 [Generic-Function
text.editing|add-site], page 〈undefined〉. A secondary site and the primary site
can [Generic-Function text.editing|rotate-sites], page 13, since the invariant
that the associated buffer has to have exactly one primary site is preserved by
that operation.

Mark Stack
A mark stack is a stack which contains former mark cursors of a [term-site],
page 3. Typical operations on the mark stack include pushing a mark cursor
that corresponds to the location of the point cursor onto the mark stack and
later popping the entry “into” the point cursor. This combination of operations
allows remembering buffer locations and returning to them later.

Insertion Stack
The insertion stack is a stack the elements of which are recently copied or killed
sequences of buffer items which are available for insertion into a buffer. “Kill”
and “yank” operations push to and pop from this stack.

This concept is similar to the “Kill Ring” in Emacs with the following differ-
ences:

• As the name suggests, the Emacs kill ring can grow to a maximum number
of items after which it will start discarding the least recent elements. In
practice however, Emacs is often configured to keep a practically unlimited
number of kill ring elements. The insertion stack is unlimited by default.

• The Emacs kill ring is global by default and has to be restricted to a local
context for extended functionality like editing with multiple cursors. In
contrast, each insertion stack is local to a specific site by default.

2.1 Units

[term-site], page 3, [term-unit], page 3, and [term-operation], page 3, are the basic concepts
from which most desired behaviors can be constructed.

•
The site controls where the operation is applied via the point and possibly mark cursor.
The site also provides additional context such as the history of previous operations,
the mark stack and the insertion stack.

•
The unit, together with the point cursor and possibly the mark cursor, controls to
which buffer items the operation should be applied. Many operations accept a direction
argument which also influences the processed items.

Chapter 2: Concepts 5

•
The operation selects the basic behavior.

Here are a few examples (see Chapter 6 [Equivalent Emacs Commands], page 38, for more
examples):

Operation Unit Direction Arguments Equivalent Emacs command
move item forward forward-char (C-f)
move item backward backward-char (C-b)
move word forward forward-word (M-f)
move word backward backward-word (M-b)
move line forward next-line (C-n)
move line backward previous-line (C-p)

delete item forward delete-char (C-d)
delete item backward delete-backward-char

(<backspace>)

delete word forward kill-word (M-d)
delete word backward backward-kill-word

(M-<backspace>)

delete line forward kill-line (C-k)
delete line backward kill-line with 0 prefix (C-0 C-

k)

change-case word forward :capital capitalize-word (M-c)

The key observation is that operations, units and directions are mostly orthogonal. In
other words, new operations and units that are defined independently should still work
together just fine in most cases. This relative independence is achieved via the [Generic-
Function text.editing|apply-from-cursor], page 8, which applies a given item-wise operation
to a sub-sequence of buffer items specified as a unit and a direction.

2.1.1 Built-in Units

The following units are provided by the text.editing library by default. Users of the library
can define additional units.

Name Super-units Description
edit:buffer buffer-unit The whole buffer.

edit:buffer-boundarybuffer-unit An empty sequence at the beginning or end of the
buffer.

text.editing.expression:expressionunit A sequence of buffer items that correspond to a node
in a syntax tree associated with the buffer.

edit:item unit A single item, usually a character, in a buffer.

Chapter 2: Concepts 6

edit:line line-unit A line within a buffer.

edit:line-boundaryline-unit An empty sequence at the beginning or end of the
line.

edit::page prose-unit not documented

edit:paragraph prose-unit A sequence of items delimited by two newlines.
The beginning and end of the buffer also delimit

paragraphs.

edit:region region-unit The sequence of characters between point and mark.
It does not matter whether point or mark is closer

to the beginning of the buffer.

text.editing.expression:region-or-expressionregion-or The sequence of characters between point and mark
or the innermost expression containing point.
Like the ‘region’ unit if the mark is set and active,

otherwise like the ‘expression’ unit.

edit:region-or-itemregion-or The sequence of characters between point and mark
or a single item.
Like the ‘region’ unit if the mark is set and active,

otherwise like the ‘item’ unit.

edit:semi-buffer buffer-unit The sequence from the cursor to one end of the
buffer.

edit:semi-line line-unit The sequence from the cursor to the beginning or
end of the line.

edit:sentence prose-unit A sequence of word and whitespace items that is
delimited by punctuation.
The beginning and end of the buffer also delimit

sentences.

text.editing.expression:toplevel-expressionexpression The sequence of buffer items that correspond to the
toplevel expression node in a syntax tree associated
with the buffer.

edit:word prose-unit A sequence of items that does not contain whitespace
or punctuation characters.
The beginning and end of the buffer also delimit

words.

Chapter 2: Concepts 7

The hierarchy of built-in unit classes looks like this:

unit

+-region-unit

| +-[unit-region], page 6

| ‘-region-or

| +-[unit-region-or-item], page 6

| ‘-[unit-region-or-expression], page 6

+-[unit-item], page 5

+-line-unit

| +-[unit-line], page 6

| +-[unit-semi-line], page 6

| ‘-[unit-line-boundary], page 6

+-buffer-unit

| +-[unit-buffer], page 5

| +-[unit-semi-buffer], page 6

| ‘-[unit-buffer-boundary], page 5

+-prose-unit

| +-[unit-word], page 6

| +-[unit-sentence], page 6

| +-[unit-paragraph], page 6

| ‘-[unit-page], page 6

‘-[unit-expression], page 5

‘-[unit-toplevel-expression], page 6

8

3 External Protocols

This chapter describes the external protocols provided by the text.editing library.

3.1 Detach Protocol

This protocol is used to sever connections between [term-site], page 3, (and associated
objects) and buffers when those objects should no longer be associated with the respective
buffer.

[Generic Function]detach [text.editing]

(object) Detach object from any buffer or line it is currently attached to.

3.2 Unit Protocol

[Function]all-units [text.editing]

Return a sequence of all defined units.

[Generic Function]apply-from-cursor [text.editing]

continuation cursor unit direction Repeatedly call continuation until the sub-sequence
of buffer items indicated by cursor, unit and direction has been processed.

continuation is a function the lambda list of which has to be compatible with (cursor

item). The function will be called for each item in the indicated sub-sequence with a
cursor that is positioned before or after the item as the first argument and the item
as the second argument. cursor is positioned before item if direction is :forward and
after item if direction is :backward.

unit is the unit in or at or around cursor that continuation should be applied to.
Examples of units are [unit-item], page 5, [unit-line], page 6, [unit-word], page 6, and
[unit-paragraph], page 6.

direction is the direction in which the processing should be performed from or around
cursor. Possible values are :forward and :backward.

[Generic Function]item-transformer [text.editing]

transform direction Return a function that transforms items via transform when
passed to [Generic-Function text.editing|apply-from-cursor], page 8.

transform is a function that accepts an item as its sole argument and returns an item
(either the item passed to it or a new item).

direction specifies the direction for which the returned function will be valid. In other
words, when the returned function is passed to [Generic-Function text.editing|apply-
from-cursor], page 8, that call has to use the same value for the direction argument
as the call to this function.

3.3 Site Protocols

This section describes protocols related to [term-site], page 3, and mixin classes that provide
default implementations of those protocols.

Chapter 3: External Protocols 9

3.3.1 Insertion Stack Protocol

This protocol allows querying and manipulating the entries of an insertion stack. This
protocol is not concerned with buffers, sites or cursors. See Section 3.6.6 [Copy and Yank
Operations], page 17, for a higher-level protocol on top of this one.

[Class]insertion-stack-empty-error [text.editing]

This error is signaled when an attempt is made to retrieve an entry from an empty
insertion stack.

[Generic Function]forward [text.editing]

insertion-entry Return the sequence of items that have been added to insertion-
entry by forward deletion operations such as cluffer:delete-item and
cluffer:join-line.

[Generic Function](setf forward) [text.editing]

new-value insertion-entry Set the sequence of items for forward deletion operations of
insertion-entry to new-value.

[Generic Function]backward [text.editing]

insertion-entry Return the sequence of items that have been added to insertion-entry
by backward deletion operations such as cluffer:erase-item.

[Generic Function](setf backward) [text.editing]

new-value insertion-entry Set the sequence of items for backward deletion operations
of insertion-entry to new-value.

[Generic Function]insertion [text.editing]

insertion-entry Return a sequence of items that should be inserted into a buffer to
conceptually insert insertion-entry into that buffer.

The returned sequence is the concatenation of the items of the “forward” and “back-
ward” sequences of insertion-entry in the appropriate order.

[Generic Function]entry-count [text.editing]

insertion-stack Return number of insertion entries in insertion-stack.

[Generic Function]top-entry [text.editing]

insertion-stack Return the top entry in insertion-stack or nil.

The forward, backward and insertion functions can be applied to the returned
object.

[Generic Function]find-entry [text.editing]

index insertion-stack Return the entry at index in insertion-stack.

The forward, backward and insertion functions can be applied to the returned
object.

[Generic Function]push-entry [text.editing]

insertion-stack Add a new entry to insertion-stack and return the new entry.

Chapter 3: External Protocols 10

[Generic Function]pop-entry [text.editing]

insertion-stack Remove the top entry from insertion-stack and return the removed
entry.

If insertion-stack is empty, signal an error of type [Class text.editing|insertion-stack-
empty-error], page 9.

3.3.2 Preferred Column Protocol

The purpose of this protocol is tracking in which column the [term-point], page 3, cursor of
a site should be placed when the cursor repeatedly moves vertically (between lines) without
other movement or operations.

[Generic Function]preferred-column [text.editing]

site Return the column number in which the point of site should reside by default or
nil.

The point cursor should be placed in that column or the rightmost existing column
of the current line when the point cursor moves between lines without moving within
any line.

[Generic Function](setf preferred-column [text.editing)]

new-value site Set the column number in which the point of site should reside by
default to new-value.

A default implementation of this protocol is provided by the following mixin class:

[Class]preferred-column-tracking-mixin [text.editing]

This class is intended to be mixed into site classes that track preferred column of the
point cursor.

3.3.3 Operation History Protocol

The purpose of this protocol is recording the sequence of operations that have been applied
to a given [term-site], page 3. This allows the command processor or certain operations, for
example, to take into account the previous operation. Examples:

• Some operations behave differently when repeated such as setting the [term-mark],
page 3, twice to first set the mark then deactivate it.

• The command processor may track runs of deletion operations to collect the deleted
items into a single [term-insertion-stack], page 4, entry.

• The command processor may track runs of insertion, deletion or modification operations
to create undo groups from multiple primitive operations.

[Generic Function]most-recent-operation [text.editing]

site Return the most recent operation of site or nil.

[Generic Function]push-operation [text.editing]

operation site Push operation into the operation history of site.

operation should be a list of the form (operation-name . arguments) where
operation-name is a symbol that names an operation function.

A default implementation of this protocol is provided by the following mixin class:

Chapter 3: External Protocols 11

[Class]operation-history-mixin [text.editing]

This class is intended to be mixed into site classes that track the history of performed
operations.

3.3.4 Site Protocol

The site protocol extends the Section 3.1 [Detach Protocol], page 8, that is, sites can be
detached.

[Generic Function]point [text.editing]

site Return the point cursor of site.

The returned object is a Cluffer cursor

[Generic Function]mark [text.editing]

site Return the mark cursor of site.

The returned object is a Cluffer cursor.

[Generic Function]mark-active-p [text.editing]

site Indicate whether the mark cursor of site is active.

[Generic Function](setf mark-active-p) [text.editing]

new-value site Change whether the mark cursor of site is active.

new-value is a generalized Boolean.

[Generic Function]mark-stack [text.editing]

site Return the mark stack of site.

[Generic Function]insertion-stack [text.editing]

site Return the insertion stack of site.

The returned object implements the Section 3.3.1 [Insertion Stack Protocol], page 9.

3.4 Buffer Protocols

This section describes protocols for buffers and mixin classes which provide default imple-
mentations of the protocols. The described protocols are extensions of the Cluffer protocols
for buffers in the sense that objects which are used with the protocols described here must
also implement the Cluffer protocols. Similarly, the mixin classes are intended to be mixed
into classes that are also subclasses of the buffer classes provided by Cluffer.

3.4.1 Primary Site Protocol

[Generic Function]site [text.editing]

buffer Return the [term-primary-site], page 4, of buffer.

The generic functions [Generic-Function text.editing|point], page 11, and [Generic-Function
text.editing|mark], page 11, defined in the Section 3.3.4 [Site Protocol], page 11, work on
buffers as well. The return value is the primary point cursor and the primary mark cursor
respectively.

Chapter 3: External Protocols 12

3.4.2 Multiple Sites Protocol

The following condition types are used in the multiple sites protocol:

[Class]singular-site-error [text.editing]

This error is signaled if an operation that requires multiple [term-site], page 3, is
performed on a buffer that contains only a single site.

An implementation of this protocol is provided by the class

[Class]multiple-site-mixin [text.editing]

This class is intended to be mixed into buffer classes that can contain zero or more
secondary [term-site], page 3, in addition to the primary site.

The protocol consists of the following generic functions:

[Generic Function]site-count [text.editing]

buffer Return the total number of sites that are attached to buffer.

The returned count includes the primary site.

[Generic Function]map-sites [text.editing]

function buffer Call function with each site that is attached to buffer.

[Generic Function]sites [text.editing]

buffer Return the sequence of all sites which are attached to buffer.

[Generic Function]add-site [text.editing]

site buffer Add site to the sites of buffer.

Return site.

If the point cursor or the mark cursor of site is associated with a buffer other than
bar, an error is signaled.

If site is already one of the sites that are attached to buffer, signal an error.

[Generic Function]remove-site [text.editing]

site buffer 〈undefined〉 [Generic-Function text.editing|detach], page 〈undefined〉, site
and remove it from the sites of buffer.

Return site.

If site is not one of the sites that are attached to buffer, signal an error.

If site is the primary site of buffer, signal an error.

[Generic Function]push-site-at [text.editing]

buffer line position Create a new site at line and position and attach it to buffer.

line and position control the location of the point cursor of the new site.

Return the new site.

[Generic Function]push-site-relative [text.editing]

buffer unit direction Create a new site relative to the primary site and attach it to
buffer.

Chapter 3: External Protocols 13

unit and direction control the location of the point cursor of the new site. The new
point cursor starts at the location of the primary point cursor, then moves according
to unit and direction.

Return the new site.

The attempt to move the new point cursor the specified location may result in an
error. In that case, the new site is not attached and the error is signaled.

[Generic Function]pop-site [text.editing]

buffer Remove the most recently added [term-site], page 3, from buffer.

Return the removed site.

If no sites beside the primary site are attached to buffer, signal an error of type [Class
text.editing|singular-site-error], page 12.

[Generic Function]rotate-sites [text.editing]

buffer direction Swap roles between the primary [term-site], page 3, and secondary
sites in buffer.

direction controls the direction of the rotation.

If direction is :forward, sites are rotated as follows:

primary ← first secondary

first secondary ← second secondary

second secondary ← third secondary

...

last secondary ← primary

direction :backward is not supported at the moment

If no sites beside the primary site are attached to buffer, signal an error of type [Class
text.editing|singular-site-error], page 12.

[Generic Function]other-sites [text.editing]

buffer Return the sequence of all sites which are attached to buffer except the primary
site.

[Generic Function]remove-other-sites [text.editing]

buffer Remove all sites from buffer except the primary site.

3.5 Operation Protocol

[Generic Function]perform [text.editing]

target operation &rest operation-arguments Perform operation with operation-
arguments in or on target.

target is the object in or at or on which the operation should be performed such as a
buffer or a cursor.

operation designates a function which performs the desired operation when called
with a target object (not necessarily target) as the first argument. The target object
in the call to operation may be different from target when methods on this generic
function translate an operation on one target object to one or more operations on
other target objects. For example, an operation on a buffer is commonly translated

Chapter 3: External Protocols 14

to one operation on each [term-site], page 3, of the buffer and further to one operation
on the point cursor of each site of the buffer.

operation-arguments is a list of additional arguments that should be passed to the
function designated by operation.

This function generally returns the values returned by the operation call. Similarly,
calls to this function may signal any condition that may be signaled by the operation
call. However, if target is a buffer and multiple sites exist, a different convention may
be used in order to return one result for each site or bundle conditions for multiple
sites in a single condition (see Section 3.4.2 [Multiple Sites Protocol], page 12).

3.6 Movement and Editing Protocol

note: The operations described in this section can be invoked by calling the
respective generic function. However, a more flexible way which, for example,
handles multiple sites correctly is the Section 3.5 [Operation Protocol], page 13.
The following code invokes an operation operation via that protocol

(text.editing:perform buffer ’operation unit direction other-

arguments)

3.6.1 Motion Operations

[Generic Function]move [text.editing]

cursor unit direction Move cursor to the beginning or end of the sub-sequence of
buffer items indicated by unit.

cursor is an attached Cluffer cursor.

unit is a unit of movement such as [unit-item], page 5, or [unit-word], page 6.

If direction is :forward, cursor moves to the end of the sub-sequence. If direction is
:backward, cursor moves to the beginning of the sub-sequence.

[Generic Function]back-to-indentation [text.editing]

cursor Move cursor to the first column of the current line that contains a non-
whitespace item.

3.6.2 Insertion Operations

[Generic Function]insert-item [text.editing]

cursor item Insert item at cursor.

[Generic Function]insert-newline [text.editing]

cursor Split the current line at the position of cursor.

[Generic Function]insert-items [text.editing]

cursor items &key start end Insert the items in items at cursor.

start and end, when supplied, select a sub-sequence of items.

Chapter 3: External Protocols 15

3.6.3 Deletion Operations

[Generic Function]delete [text.editing]

cursor unit direction Delete the sub-sequence of buffer items indicated by cursor, unit
and direction.

cursor is an attached Cluffer cursor.

unit is a unit of movement such as [unit-item], page 5, or [unit-word], page 6.

direction is either :forward or :backward.

[Generic Function]delete-indentation [text.editing]

cursor Join previous and current line, delete whitespace before and after cursor.

Keep a single space character unless the delete placed cursor on an empty line.

[Generic Function]delete-trailing-whitespace [text.editing]

cursor Delete trailing whitespace from buffer lines.

cursor determines the first line to be processed. All subsequent lines to the end of
the buffer are processed after that.

[Generic Function]fixup-whitespace [text.editing]

cursor Delete consecutive whitespace before and after cursor in the current line.

Keep a single space character unless the deletion placed cursor at the beginning of
the line.

3.6.4 Items Functions

The following convenience function allow easy retrieval and mutation of sub-sequences of
buffer items:

[Generic Function]map-items [text.editing]

function cursor unit direction Call function with each item in the sub-sequence of
buffer items indicated by cursor, unit and direction.

[Generic Function]items [text.editing]

cursor unit direction Return a cl:sequence containing the sub-sequence of buffer
items indicated by cursor, unit and direction.

[Generic Function](setf items) [text.editing]

new-value cursor unit direction Replace the sub-sequence of buffer items indicated by
cursor, unit and direction by the items in the cl:sequence new-value.

3.6.5 Marking Operations

The mark protocol contains operations for managing different aspects of the [term-mark],
page 3, cursor of a [term-site], page 3:

• The mark cursor can be set or not.

• A set mark cursor can be active or inactive. When the mark is active, the point cursor
and mark cursor define the [term-region], page 3, of the site.

• A mark stack stores previous locations of the mark cursor.

Chapter 3: External Protocols 16

[Generic Function]mark-or-error [text.editing]

object Return the mark cursor of object or signal an error.

If the mark cursor of object is not set, signal an error of type mark-not-set-error.

[Generic Function]activate-mark [text.editing]

site Set the state of the mark cursor of site to active.

Signal an error of type mark-not-set-error if the mark of site is not set.

[Generic Function]deactivate-mark [text.editing]

site Set the state of the mark cursor of site to inactive.

[Generic Function]set-mark [text.editing]

site Set the mark cursor of site to the position of the point cursor.

Push the current mark cursor, if any, onto the mark stack, set a new mark cursor and
move it to the position of the point cursor. Activate the mark.

Return the new mark cursor.

[Generic Function]set-mark-or-toggle-active [text.editing]

site Set the mark cursor of site or toggle its active state.

If the previous command was not set-mark-or-toggle-active, then push the cur-
rent mark cursor of site onto the mark stack, set a new mark cursor and move it to
the position of the point cursor.

If the previous command was set-mark-or-toggle-active, then toggle the active
state of the mark cursor of site.

Return two values: a Boolean which indicates whether a new mark cursor was set
and another Boolean which indicates whether the mark is active.

[Generic Function]pop-mark [text.editing]

site Pop a mark off the mark stack of site and move the point cursor to it.

Destroy the current mark of site, if any.

Return the popped mark cursor.

Signal an error of type mark-stack-empty if the mark stack of site is empty.

[Generic Function]exchange-point-and-mark [text.editing]

site Exchange the locations of point and mark of site.

Signal an error of type mark-not-set-error if the mark of site is not set.

[Generic Function]mark-object [text.editing]

site unit direction Set region of site according to unit and direction.

Leave the point cursor of site at its current location. Ensure the mark is set and
active (see below) and move the mark cursor according to unit and direction.

If the mark of site is not set, set a new mark cursor at the location of the point cursor
and activate it. Then apply the motion according to unit and direction.

If the mark of site is set but not active, activate the mark cursor and move it to the
location of the point cursor. Then apply the motion according to unit and direction.

If the mark of site is set and active, just apply the motion according to unit and
direction. This last case allows extending the region by marking subsequent objects.

Chapter 3: External Protocols 17

3.6.6 Copy and Yank Operations

The copy and yank protocol offers higher-level functions that implement typical copy and
yank operations which abstract from the details of the lower-level Section 3.3.1 [Insertion
Stack Protocol], page 9.

[Generic Function]yank [text.editing]

site direction &key pop Insert top insertion stack entry of site at the point of site.

Insert the items from the top entry of the insertion stack of site before or after the
point cursor of site.

direction controls whether the items are inserted before or after the point cursor, or
equivalently, whether the point cursor moves to the beginning or end of the inserted
items after the insertion.

pop controls whether the top entry of the insertion stack should be popped off.

[Generic Function]copy [text.editing]

site unit direction Copy items according at site according to unit and direction.

The items indicated by the point cursor of site, unit and direction are copied into
either the current top entry of the insertion stack of site or a new entry that is first
pushed onto the insertion stack.

Whether a new entry should be created is decided according to an internal protocol
that may be exported at some later time.

3.6.7 Case Changing Operations

[Generic Function]change-case [text.editing]

cursor unit direction case Change the case of the sub-sequence of buffer items indicated
by cursor, unit and direction according to case.

cursor is an attached Cluffer cursor.

unit is a unit of movement such as [unit-item], page 5, [unit-word], page 6, or
expression.

direction is either :forward or :backward.

case has to be one of :down, :up or :capital.

The case of an item is changed by calling cl:char-downcase if case is :down,
cl:char-upcase if case is :up and in a fashion analogous to cl:string-capitalize

if case is capital.

3.6.8 Transposing Operations

[Generic Function]transpose [text.editing]

cursor unit direction Exchange the sequences of items defined by unit before and after
cursor.

If cursor is within a unit, it is first moved to the boundary of that unit according to
direction.

direction is either :forward or :backward and controls where cursor is positioned
after the operation.

Chapter 3: External Protocols 18

3.6.9 Filling Operations

[Generic Function]insert-words-fill [text.editing]

cursor words &key prefix suffix per-line-prefix fill-column Insert words at cursor with
added line breaks according to fill-column.

words is a sequence of strings.

Each of prefix, suffix and per-line-prefix is a string if supplied.

fill-column, if supplied, is positive integer. If not supplied, fill-column defaults to the
value of text.editing:*fill-column* which in turn is bound to 80 by default.

Roughly proceed as follows:

1. If it has been supplied, insert the prefix string.

2. For each string in words

• If inserting the string at the current location would exceed fill-column, insert
a line break and, if it has been supplied, insert the per-line-prefix string.

• Unless the string is just punctuation, insert a space.

• Insert the string.

3. If it has been supplied, insert the suffix string.

[Generic Function]fill-words [text.editing]

start-cursor end-cursor words &key prefix suffix per-line-prefix fill-column Replace
the region between start-cursor and end-cursor by filling with words.

words is a sequence of strings.

prefix, suffix, per-line-prefix and fill-column behave as described for [Generic-Function
text.editing|insert-words-fill], page 18.

3.6.10 Commenting Operations

[Generic Function]comment [text.editing]

cursor unit direction &key comment-syntax Comment buffer items at or around cursor
according to unit and direction.

comment-syntax, if supplied, has to be a string which specifies the comment syntax
to use. The default is ;; if unit is [unit-line], page 6, and #| otherwise.

[Generic Function]uncomment [text.editing]

cursor unit direction Uncomment buffer items at or around cursor according to unit
and direction.

3.6.11 Operations on Delimiter Pairs

The operations described in this section together with the operations of the Chapter 5
[Expressions], page 30, module allow structural editing of buffer contents in the sense that
they transform a given buffer text that is syntactically valid to a new buffer text that is
also syntactically valid. This is in contrast to general operations such as deleting a single
item: Consider deleting a single item in the buffer text (length "hi"). If the deleted
item is the (, the) or either of the ", the resulting buffer text is no longer a syntactically
valid s-expression. In this example, deletion operations that preserve the validity can, for

Chapter 3: External Protocols 19

example, delete both characters of the () and "" pairs simultaneously once the items in
between have been deleted or delete the respective delimiter pair in a single operation, thus
“raising” the formerly surrounded items up one level of expression nesting:

(length "hi") ⇒ (length "") ⇒ (length) ⇒ () ⇒
(length "hi") ⇒ length "hi"

The above examples illustrate two kinds of operations:

• The first kind are operations which are intended as structure-preserving variants of
“ordinary” operations, mainly of insertion and deletion operations since those affect
the structural validity when applied to delimiter characters. These operations are
described in the following section.

• The second kind, of which the “raising” operation is one example, consider the buffer
text as an expression tree and perform modifications on that tree. Those operations are
described as a part of the Chapter 5 [Expressions], page 30, module (see Section 5.2.4
[Expression Operations], page 33).

[Class]no-closing-delimiter-error [text.editing]

This error is signaled when an operation that requires a closing delimiter item is
performed on a cursor that is not located at or near such an item.

[Generic Function]insert-delimiter-pair [text.editing]

cursor opening &key closing

Insert the delimiter character opening before cursor and insert the delimiter character
closing after cursor.

If closing is not supplied, the closing delimiter character is determined by looking
up the pair that has opening as the opening delimiter character in the set of known
delimiter pairs.

The return value of this function is unspecified.

This function is intended to be used as a structure-preserving replacement for “ordi-
nary” operations that insert an opening delimiter: When a user performs the oper-
ation for inserting the opening delimiter, operations for inserting some content and
the operation for inserting the closing delimiter, the first operation has to insert both
delimiters to avoid unbalanced delimiters:

| ⇒ (|) ⇒ ... ⇒ (foo|) ⇒ (foo)|

With this editing model, it is not allowed to insert an opening delimiter by itself.
This is also true for closing delimiters (see [Generic-Function text.editing|move-past-
closing-delimiter], page 20)

[Generic Function]maybe-move-past-closing-delimiter [text.editing]

cursor closing &key whitespace

If the item after cursor is equal to the character closing, move cursor forward past
the closing delimiter.

whitespace which must be either nil or :move-past or :delete controls the behavior
in case there are whitespace items between cursor and the item that is equal to closing.
If whitespace is nil and there are such items, cursor does not move. If whitespace is
:move-past, cursor moves past the whitespace items and past the closing delimiter. If

Chapter 3: External Protocols 20

whitespace is :delete, the whitespace items are deleted, and cursor is moved passed
the closing delimiter.

Return true if cursor has moved and false otherwise.

[Generic Function]move-past-closing-delimiter [text.editing]

cursor closing &key whitespace

If the item after cursor is equal to the character closing, move cursor forward past
the closing delimiter.

whitespace controls the behavior in case cursor is separated from the closing de-
limiter by whitespace. See [Generic-Function text.editing|maybe-move-past-closing-
delimiter], page 19, for details.

The return value of this function is unspecified.

If the item after cursor, either immediately after or the first non-whitespace item
after, is not equal to cursor, signal an error of type [Class text.editing|no-closing-
delimiter-error], page 19.

This function is intended to be used as a structure-preserving replacement for “ordi-
nary” operations that insert an “heterogeneous” (that is, for example) but not ")
closing delimiter: When a user performs the operation for inserting the opening delim-
iter, operations for inserting some content and the operation for inserting the closing
delimiter, the first operation has to insert both delimiters and the final operation
simply has to move past the closing delimiter:

| ⇒ (|) ⇒ ... ⇒ (foo|) ⇒ (foo)|

With this editing model, it is never necessary and in fact never allowed to insert a
closing delimiter by itself which is why this function signals an error if there is no
closing delimiter to move past. This is also true for opening delimiters (see [Generic-
Function text.editing|insert-delimiter-pair], page 19).

[Generic Function]move-past-closing-delimiter-or-insert-delimiter-
pair
[text.editing]

cursor delimiter &key whitespace

If the item after cursor is equal to the character delimiter, move cursor forward past
the (assumed to be) closing delimiter. If the item after cursor is not equal to the
character delimiter, insert delimiter before cursor and insert delimiter after cursor.

whitespace controls the behavior in case cursor is separated from the closing de-
limiter by whitespace. See [Generic-Function text.editing|maybe-move-past-closing-
delimiter], page 19, for details.

Return true if a pair of delimiters has been inserted and false otherwise.

This function is intended to be used as a structure-preserving replacement for “or-
dinary” operations that insert a “homogeneous” (that is, for example " but not))
delimiter: When a user performs the operation for inserting delimiter, operations for
inserting some content and the operation for inserting delimiter again, the first oper-
ation has to insert delimiter twice and the final operation simply has move past the
second delimiter:

| ⇒ "|" ⇒ ... ⇒ "foo|" ⇒ "foo"|

Chapter 3: External Protocols 21

With this editing model, it is never necessary and in fact never allowed to insert a
single delimiter by itself which is why this function inserts a delimiter pair if there is
no closing delimiter to move past.

Examples:

(move-past-closing-delimiter-or-insert-delimiter-pair cursor #\") in

"foo|"

⇒ "foo"|

(move-past-closing-delimiter-or-insert-delimiter-pair cursor #\") in

(length |)

⇒ (length "|")

[Generic Function]delete-delimiter-pair-or-item [text.editing]

cursor direction &key if-not-empty

If there is one, delete the pair of delimiter characters which contains cursor. Otherwise
delete an item in direction.

In this context, a delimiter pair contains cursor, if either the delimiter characters
surround cursor or if direction is :forward and the opening delimiter is the item
after cursor or if direction is :backward and the closing delimiter is the item before
cursor.

if-not-empty controls the behavior in case the operation is applied to a delimiter pair
that is not empty in the sense that the opening and the closing delimiter surround
other buffer items:

nil Do nothing, do not move cursor and do not delete any items.

:move-past

Move cursor past the “obstructing” delimiter and into the delimited con-
tent so that subsequent deletion operations will delete the content item
by item until the delimited content is empty and the delimiter pair can
be deleted.

:delete-inside

Do not move cursor but delete one item from the content that is delimited
by the “obstructing” delimiter. This behavior can be repeated until the
delimited content is empty and the delimiter pair can be deleted.

a-function

Call the supplied function with two arguments, cursor and an description
of the “obstacle” which is either :outside or :inside. The function can
delete items near cursor or move cursor as appropriate.

The return value of this function is unspecified.

This function is intended to be used as a structure-preserving replacement for “or-
dinary” operations that delete a single item: If the to-be-deleted item is a closing
delimiter or an opening delimiter, the “opposite” delimiter has to be deleted in the
same operation to maintain delimiter balance. If the to-be-deleted item is not a
delimiter, the task can be delegated to the “ordinary” deletion operation.

Chapter 3: External Protocols 22

Examples:

(delete-delimiter-pair-or-item cursor :forward) in

|()

⇒ |

(delete-delimiter-pair-or-item cursor :forward) in

(|)

⇒ |

(delete-delimiter-pair-or-item cursor :forward :if-not-empty if-not-

empty) in

(foo|)

⇒ (foo|) when if-not-empty is nil

⇒ (foo)| when if-not-empty is :move-past

⇒ (fo|) when if-not-empty is :delete-inside

(delete-delimiter-pair-or-item cursor :forward :if-not-empty if-not-

empty) in

|(foo)

⇒ |(foo) when if-not-empty is nil

⇒ (|foo) when if-not-empty is :move-past

⇒ |(oo) when if-not-empty is :delete-inside

[Generic Function]surround-with-delimiter-pair [text.editing]

cursor unit direction opening &key closing count

Surround the item sequence between cursor and the location that would result from
moving cursor count times by unit in direction with the delimiters opening and
closing.

If supplied, closing is a character that should be used as the closing delimiter of
the pair. If closing is not supplied, the result of evaluating (closing-delimiter

opening) is used.

If supplied, count controls how many units as indicated by unit should be surrounded
by the inserted delimiters. If count is not supplied, a single unit is used.

The return value of this function is unspecified.

Examples:

(surround-with-delimiter-pair cursor [unit-word], page 6, :forward #\") in

|foo bar

⇒ "|foo" bar

(surround-with-delimiter-pair cursor [unit-word], page 6, :forward #\" :count 2) in

|foo bar

⇒ "|foo bar"

(surround-with-delimiter-pair cursor [unit-word], page 6, :backward #\(:count 2) in

foo bar| baz

⇒ (foo bar|) baz

23

4 Search

This chapter describes functions for ordinary search as well as incremental search.

The ordinary search operation accepts a query sequence and moves the [term-point], page 3,
cursors from their current locations either forward or backward to the nearest occurrence
of the query sequence in the buffer, if any.

The incremental search operation, on the other hand, maintains a mutable current query
sequence which the client can extend or truncate, as well as a set of current matches.
Extending or truncating the query shrinks or grows the set of matches as fewer or more sub-
sequences in the buffer match the current query sequence. The [term-point], page 3, cursors
are typically moved to the locations of certain matches, for example the nearest match
following the location of a given cursor, during the incremental search. The association
between cursors and matches can be changed so that point cursors can “jump” from one
match to the next or previous match.

The search functionality is provided as a separate module which uses the
text.editing.search package.

4.1 Search Concepts

The high-level overview for an interactive, incremental search operation in a buffer is some-
thing like this:

1.

The client performs the operation to start an incremental search in a given buffer which
creates a [term-buffer-search-state], page 24, and [term-site-search-state], page 24, for
that buffer. The query sequence and set of [term-match], page 24, are initially empty.

2.

The client repeatedly updates the search state:

1.

Based on user commands, the client uses operations to extend or truncate the
query sequence or to move point cursors between matches or to change parameters
of the search operation like case sensitivity.

2.

The set of matches is updated or recomputed. The associations between point
cursors and matches are updated. Point cursors are moved to new locations.

3.

The client displays the updated search state, in particular the current set of
matches and point cursor locations to the user.

3.

Based on user commands, the client finishes or aborts the incremental search to either
leave all point cursors where the previous operations positioned them or reset all point
cursors to their locations prior to the incremental search. Alternatively, the client may
finish the incremental search by converting the final set of matches to sites.

Chapter 4: Search 24

Buffer Search State
During search operations, a buffer search state is associated with the buffer
in which the operation is performed. This search state consists of parameters,
state and results of the search operation such as:

• The buffer region in which the search operation is performed.

• The current query sequence of which occurrences should be found.

• Parameters like the case sensitivity of the search operation.

• The current set of [term-match], page 24.

Match

A match consists of a start cursor and an end cursor which delimit a sequence of
buffer items that matches the query string. A match has an associated previous
match and an associated next match either or both of which can be the match
itself (if the set of current matches has a single element).

Site Search State
During search operations, a site search state which consists of a start location,
that is the location of the point cursor prior to the start of the search, and a
current match is associated with each site.

4.2 Search Dictionary

4.2.1 Search Conditions

The conditions of the following types are signaled by functions in the search module:

[Class]already-in-incremental-search-error [text.editing.search]

An error of this type is signaled when an operation that starts an incremental search
is performed when an incremental search is already associated with the buffer.

[Class]not-in-incremental-search-error [text.editing.search]

An error of this type is signaled when an operation that works only in the context
of an incremental search is performed when no incremental search is associated with
the buffer.

[Class]no-next-match-error [text.editing.search]

An error of this type is signaled when the [Generic-Function text.editing.search|next-
match], page 29, operation is performed on a cursor for which there is no following
match and wrap-around is false or there are no matches at all.

[Class]no-previous-match-error [text.editing.search]

An error of this type is signaled when the [Generic-Function text.editing.search|previous-
match], page 29, operation is performed on a cursor for which there is no preceding
match and wrap-around is false or there are no matches at all.

4.2.2 Search State Protocol

The search state protocol specifies generic functions that operate on a [term-buffer-search-
state], page 24, while an incremental search is being performed.

The search state protocol extends the Section 3.1 [Detach Protocol], page 8, that is, search
states can (and must) be detached. When detached, a search state detaches all its matches.

Chapter 4: Search 25

[Generic Function]start [text.editing.search]

search-state Return a cursor that represents the buffer location at which the incre-
mental search represented by search-state started.

[Generic Function]query [text.editing.search]

search-state Return the current query sequence for search-state.

The returned sequence must not be modified. [Generic-Function
text.editing.search|extend-query], page 28, and [Generic-Function
text.editing.search|truncate-query], page 28, must be used instead.

[Generic Function]case-mode [text.editing.search]

search-state Return the case mode, which is either :ignore or :match, of search-state.

[Generic Function](setf case-mode) [text.editing.search]

new-value search-state Set the case mode of search-state to new-value which must be
either :ignore or :match.

Calling this function causes search-state to be rebuilt via [Generic-Function
text.editing.search|rebuild-state], page 25.

[Generic Function]match-count [text.editing.search]

search-state Return the number of [term-match], page 24, contained in search-state.

[Generic Function]map-matches [text.editing.search]

function search-state Call function with each [term-match], page 24, in search-state.

[Generic Function]matches [text.editing.search]

search-state Return a sequence of the [term-match], page 24, in search-state.

[Generic Function]add-match [text.editing.search]

search-state buffer start end Add a match in buffer between the cursors start and end
to search-state.

Return the newly created match object.

[Generic Function]remove-match [text.editing.search]

search-state buffer match Remove match from search-state.

The default method on this generic function Section 3.1 [Detach Protocol], page 8,
match and, if a site search state refers to match, replaces that reference with another
match.

[Generic Function]initial-matches [text.editing.search]

search-state Compute the initial matches for search-state based on the [Generic-
Function text.editing.search|start], page 24, cursor and the [Generic-Function
text.editing.search|query], page 25, sequence.

Call [Generic-Function text.editing.search|add-match], page 25, for each computed
match.

[Generic Function]rebuild-state [text.editing.search]

search-state Rebuild search-state from scratch, that is remove the current matches
and use [Generic-Function text.editing.search|initial-matches], page 25, to compute
new matches.

Chapter 4: Search 26

[Generic Function]finish [text.editing.search]

search-state Finish the incremental search represented by search-state leaving all
[term-point], page 3, cursors at their current locations.

[Generic Function]abort [text.editing.search]

search-state Abort the incremental search represented by search-state moving all
[term-point], page 3, cursors the locations at which they were positioned before the
incremental search started.

[Generic Function]description [text.editing.search]

search-state &key comment

4.2.3 Match Protocol

The match protocol extends the Section 3.1 [Detach Protocol], page 8, that is matches can
(and must) be detached.

[Generic Function]next [text.editing.search]

match Return the next match after match or nil if there is no next match.

[Generic Function]previous [text.editing.search]

match Return the previous match before match or nil if there is no previous match.

[Generic Function]start [text.editing.search] match
Return a cursor which marks the start of match.

[Generic Function]end [text.editing.search]

match Return a cursor which marks the end of match.

[Generic Function]item-matches-p [text.editing.search]

state match query-item Indicate whether match extended with query-item matches
the buffer sub-sequence corresponding to match.

4.2.4 Site Search State Protocol

The site search state protocol extends the Section 3.1 [Detach Protocol], page 8, that is site
search states can (and must) be detached.

[Generic Function]start [text.editing.search] site-search-state
Return a cursor which indicates the location at which the [term-point], page 3, cursor
of the site associated with site-search-state was positioned before the start of the
incremental search.

[Generic Function]match [text.editing.search]

site-search-state Return the [term-match], page 24, associated with site-search-state
or nil.

[Class]site-search-state [text.editing.search]

Instances of this class store a start cursor and a [term-match], page 24, that should
be associated with a [term-site], page 3, in the context of an incremental search.

Chapter 4: Search 27

4.2.5 Buffer Search State Protocol

The sole purpose of the buffer search state protocol is retrieving the [term-buffer-search-
state], page 24, associated with a given buffer:

[Generic Function]search-state [text.editing.search]

buffer Return the [term-buffer-search-state], page 24, associated with buffer or nil if
there is none.

[Class]search-state-mixin [text.editing.search]

This class is intended to be mixed into buffer classes that implement the buffer search
state protocol.

Methods on [Generic-Function text.editing.search|add-match], page 25, and [Generic-
Function text.editing.search|remove-match], page 25, specialized to this class take
care of associating sites (or the site) of the buffer with the nearest match(es) as
matches are added and removed.

4.2.6 Ordinary Search Operations

[Generic Function]search [text.editing.search]

target query direction Search for occurrences of query in the underlying buffer of
target from each site in direction.

target can be a buffer, a site or a cursor. In any of those cases, the search will include
all sites of the underlying buffer.

query is the sequence of items to search for.

direction can be either :forward or :backward and controls in which direction point
cursors should move towards the nearest occurrence of query in the buffer.

TODO case mode etc.

4.2.7 Incremental Search Operations

[Generic Function]incremental-search [ext.editing.search]

target direction Start an incremental search in the underlying buffer of target.

target can be a buffer, a site or a cursor. In any of those cases, the incremental search
will include all sites of the underlying buffer.

Create a [term-buffer-search-state], page 24, and associate it with the underlying
buffer of target. The search state starts out with an empty query sequence and an
empty set of [term-match], page 24. For each [term-site], page 3, in the buffer, create
a [term-site-search-state], page 24, that is initially not associated with any match (as
there are no matches initially). Return the created buffer search state.

If there already is an incremental search associated with target, signal an error of
type [Class text.editing.search|already-in-incremental-search-error], page 24.

[Generic Function]finish-incremental-search [text.editing.search]

target Finish the incremental search associated with target

Keep all point cursors at the locations to which they were moved due to search
operations.

Chapter 4: Search 28

target can be a buffer, a site or a cursor. In any of those cases, the incremental search
will include all sites of the underlying buffer.

If there is no incremental search associated with target, signal an error of type [Class
text.editing.search|not-in-incremental-search-error], page 24.

[Generic Function]abort-incremental-search [text.editing.search]

target Abort the incremental search associated with target.

In particular, move all involved point cursors back to the locations at which they
resided before the incremental search started.

target can be a buffer, a site or a cursor. In any of those cases, the incremental search
will include all sites of the underlying buffer.

If there is no incremental search associated with target, signal an error of type [Class
text.editing.search|not-in-incremental-search-error], page 24.

[Generic Function]convert-matches-to-sites [text.editing.search]

target Finish the search involving target, and add a [term-site], page 3, at the location
of each [term-match], page 24, (except for the match that is associated with the
primary site).

target can be a buffer, a site or a cursor. In any of those cases, the operation will
affect the incremental search state associated with the underlying buffer.

If there is no incremental search associated with target, signal an error of type [Class
text.editing.search|not-in-incremental-search-error], page 24.

warning: Performing this operation on an incremental search state that
already involves more than one site is currently not supported. A suitable
behavior for that situation may be specified in the future.

[Generic Function]extend-query [text.editing.search]

target item Add item at the end of the query sequence of the incremental search
associated with target.

target can be a buffer, a site or a cursor. In any of those cases, the operation will
affect the incremental search state associated with the underlying buffer.

Extending the query sequence can lead to matches being modified or removed from
the current set of matches. Point cursors can also move to different locations as a
result.

If there is no incremental search associated with target, signal an error of type [Class
text.editing.search|not-in-incremental-search-error], page 24.

[Generic Function]truncate-query [text.editing.search]

target &key count Remove count items from the end of the query sequence of the
incremental search associated with target.

target can be a buffer, a site or a cursor. In any of those cases, the operation will
affect the incremental search state associated with the underlying buffer.

count is a positive integer no greater than the length of the query sequence.

Truncating the query sequence can lead to matches being modified and new matches
being added to the current set of matches. Point cursors can also move to different
locations as a result.

Chapter 4: Search 29

If there is no incremental search associated with target, signal an error of type [Class
text.editing.search|not-in-incremental-search-error], page 24.

[Generic Function]next-match [text.editing.search]

target &key wrap-around In the search involving target, move all point cursors to the
respective next match.

target can be a buffer, a site or a cursor. In any of those cases, the incremental search
will include all sites of the underlying buffer.

wrap-around controls the behavior in case there is no next match when a point cursor
should be moved to the next match. If there is no next match and wrap-around is false
or there are no matches at all, signal an error of type [Class text.editing.search|no-
next-match-error], page 24.

If there is no incremental search associated with target, signal an error of type [Class
text.editing.search|not-in-incremental-search-error], page 24.

[Generic Function]previous-match [text.editing.search]

target &key wrap-around In the search involving target, move all point cursors to the
previous match.

target can be a buffer, a site or a cursor. In any of those cases, the incremental search
will include all sites of the underlying buffer.

wrap-around controls the behavior in case there is no previous match when a point
cursor should be moved to the previous match. If there is no previous match and
wrap-around is false or there are no matches at all, signal error of type [Class
text.editing.search|no-previous-match-error], page 24.

If there is no incremental search associated with target, signal an error of type [Class
text.editing.search|not-in-incremental-search-error], page 24.

30

5 Expressions

5.1 Expressions Concepts

This module adds support for operating on expressions which are basically nodes in a
(concrete) syntax tree constructed by clients of this library from the text of the buffer.
To this end, the module defines two [term-unit], page 3: [unit-expression], page 5, and
[unit-toplevel-expression], page 6, the semantics of which depend on the implementations of
Section 5.2.2 [Expression Node Protocol], page 31, Section 5.2.3 [Expression Tree Protocol],
page 32, that clients of this library must provide, for example by parsing the source code of
a buffer and constructing a (concrete) syntax tree. The expression-based units work with
the usual operations for Section 3.6.1 [Motion Operations], page 14, Section 3.6.3 [Deletion
Operations], page 15, and so on. In addition, this module provides Section 5.2.4 [Expression
Operations], page 33, such as splitting and joining that work with the expression-based
units.

The concept of an expression must appear very vague at this point and this vagueness
is in part intrinsic since the exact nature of expressions for a given buffer is defined, as
mentioned above, by the client. However, we can still make the concept as concrete as
possible by defining that an expression is a node in a tree and has the following properties

• A start location which is a buffer location expressed as a line number and a column
number.

• An end location which is a buffer location that is expressed as a line number and a
column number and follows the start location.

• A possibly empty sequence of child expressions such that:

• For each child expression the start and end locations are within the buffer delimited
by the start and end location of the parent expression.

• for a child c2 that follows a child c1 in the sequence of children, the start location
of c2 must be equal to or greater than the end location of c1.

The following figure shows an example buffer text and a possible expression tree for that
text:

(+ 1 2)

(+ 1 2)

+ 1 2

expression start expression end

expression node

children

expression tree

text

Figure 5.1: Example buffer text and a possible expression tree for that text. Corresponding
parts are indicated by matching colors. Child nodes should be considered from left to right.

Chapter 5: Expressions 31

5.2 Expressions Dictionary

5.2.1 Expression Conditions

[Class]cursor-not-inside-expression-error [text.editing.expression]

This error is signaled when an operation that requires an expression which [term-
contains], page 32, cursor is attempted and no such expression exists.

[Class]no-expression-after-cursor-error [text.editing.expression]

This error is signaled when an operation that requires an expression after the cursor
is attempted and no such expression exists.

[Class]no-expression-before-cursor-error [text.editing.expression]

This error is signaled when an operation that requires an expression before the cursor
is attempted and no such expression exists.

[Class]expression-at-toplevel-error [text.editing.expression]

This error is signaled when an operation that requires a non-toplevel expression before
or after the cursor is attempted and no such expression exists.

[Class]expression-does-not-have-children-error [text.editing.expression]

This error is signaled when an operation that requires an expression with children is
attempted on an expression that does not have any children.

[Class]no-expression-after-expression-error [text.editing.expression]

This error is signaled when an operation that requires an expression after some des-
ignated expression is attempted and no such expression exists.

[Class]no-expression-before-expression-error [text.editing.expression]

This error is signaled when an operation that requires an expression before some
designated expression is attempted and no such expression exists.

5.2.2 Expression Node Protocol

The purpose of the expression node protocol is to allow this library to inspect nodes of an
expression tree that is constructed and managed by a client of this library. Accordingly,
this library does not define methods on the following generic functions. Instead, clients are
expected to define methods that are suitable for the expression representation used by the
respective client.

[Generic Function]range [text.editing.expression]

expression Return the source range, that is the start and end buffer positions, of
expression as four values

1. The start line number of expression

2. The start column number of expression

3. The end line number of expression

4. The end column number of expression

Chapter 5: Expressions 32

[Generic Function]children [text.editing.expression]

expression Return a possibly empty sequence of child expressions of expression. The
elements of the returned sequence are ordered according to their respective start
locations and do not overlap.

5.2.3 Expression Tree Protocol

The purpose of the expression tree protocol is to allow this library to query an expression
tree that is constructed and managed by a client of this library. Accordingly, this library
does not define all required methods on the following generic functions. Instead, clients are
expected to define methods (or at least one method) that are suitable for the expression
tree representation used by the respective client. For this protocol, it is sufficient for each
client to define a method that is suitable for the respective expression tree presentation on
the generic function map-expressions-containing-cursor-using-buffer.

For the description of the protocol functions in this section, we need the following definition:
Let rs, the start relation, and re, the end relation, be either < or ≤ respectively. An
expression with start location s and end location e contains a cursor c with respect to rs
and re iff rs(s, c) ∧ re(c, e).

[Generic Function]map-expressions-containing-cursor [text.editing.expression]

function cursor syntax-tree &key start-relation end-relation

Call function for each [term-expression], page 30, in the buffer of cursor that [term-
contains], page 32, cursor with respect to start-relation and end-relation. The return
value of this function is unspecified. For more information about the parameters and
behavior, see [Generic-Function text.editing.expression|map-expressions-containing-
cursor-using-buffer], page 32.

The default method on this generic function calls [Generic-Function
text.editing.expression|map-expressions-containing-cursor-using-buffer], page 32,
with the buffer that cursor is associated with.

[Generic Function]map-expressions-containing-cursor-using-buffer
[text.editing.expression]

function buffer cursor syntax-tree &key start-relation end-relation

Call function for each [term-expression], page 30, in buffer that [term-contains],
page 32, cursor with respect to start-relation and end-relation. If multiple expressions
contain cursor, the call for a given expression precedes the calls for the ancestors of
that expression in the expression tree, that is innermost or leaf expressions are pro-
cessed first, outermost or toplevel expressions are processed last.

syntax-tree selects the syntax tree in which expressions should be considered. For
example, the buffer of cursor may have an associated concrete syntax tree and also
an abstract syntax tree.

Both start-relation and end-relation which must be either the symbol < or the symbol
<= select the respective relation.

The return value of this function is unspecified.

[Generic Function]expressions-containing-cursor [text.editing.expression]

cursor syntax-tree &key start-relation end-relation count

Chapter 5: Expressions 33

Return a possibly empty sequence of [term-expression], page 30, in the buffer of
cursor that [term-contains], page 32, cursor with respect to start-relation and end-
relation. If count is supplied, its value must be a non-negative integer. In that
case, the number of elements in the returned sequence is limited to that number. For
more information about the behavior and the other parameters, see [Generic-Function
text.editing.expression|map-expressions-containing-cursor-using-buffer], page 32.

The default method on this generic function calls [Generic-Function
text.editing.expression|map-expressions-containing-cursor], page 32, and collects
the provided expressions, stopping when count expressions have been collected if
applicable.

[Function]innermost-expression-containing-cursor [text.editing.expression]

cursor syntax-tree &key start-relation end-relation

Return the innermost [term-expression], page 30, in the buffer of cursor that [term-
contains], page 32, cursor with respect to start-relation and end-relation or nil if there
is no such expression. For more information about the behavior and the other pa-
rameters, see [Generic-Function text.editing.expression|map-expressions-containing-
cursor-using-buffer], page 32.

[Function]outermost-expression-containing-cursor [text.editing.expresssion]

cursor syntax-tree &key start-relation end-relation

Return the outermost [term-expression], page 30, in the buffer of cursor that [term-
contains], page 32, cursor with respect to start-relation and end-relation or nil if there
is no such expression. For more information about the behavior and the other pa-
rameters, see [Generic-Function text.editing.expression|map-expressions-containing-
cursor-using-buffer], page 32.

5.2.4 Expression Operations

The operations described in this section are designed to, in conjunctions with the
Section 3.6.11 [Operations on Delimiter Pairs], page 18, enable structural editing of buffer
contents.

[Generic Function]raise [text.editing.expression]

cursor unit direction

Raise the innermost [term-expression], page 30, e which [term-contains], page 32,
follows or precedes cursor by deleting the buffer items that make up the parent of e
and the siblings of e but preserving the buffer items that make up e.

unit must be [unit-expression], page 5, at the moment.

direction which must be either :forward or :backward controls whether the expres-
sion e should follow or precede cursor.

The return value of this function is unspecified.

After the operation, cursor resides in the same relative location with respect to the
preserved buffer item as before the operation.

When there is no such expression, signal [Class text.editing.expression|no-expression-
after-cursor-error], page 31, or [Class text.editing.expression|no-expression-before-
cursor-error], page 31, depending on direction.

Chapter 5: Expressions 34

Examples:

(raise cursor [unit-expression], page 5, :forward) in

1 2 (3 4 |5 6) 7 8

⇒ 1 2 |5 7 8

(raise cursor [unit-expression], page 5, :backward) in

1 2 (3 4 |5 6) 7 8

⇒ 1 2 |5 7 8

[Generic Function]splice [text.editing.expression]

cursor unit direction

Splice [term-expression], page 30, e1 to en that follow or precede cursor by replacing
the buffer items that make up the expression which [term-contains], page 32, cursor
with the buffer items that make up e1 to en.

unit must be [unit-expression], page 5, at the moment.

If direction is :forward, expressions that follow cursor are preserved. If direction
is :backward, expressions that precede cursor are preserved. If direction is nil,
expressions that follow and precede cursor are preserved.

The return value of this function is unspecified.

After the operation, cursor resides in the same relative location with respect to the
preserved buffer items as before the operation.

When there is no such expression, signal [Class text.editing.expression|cursor-not-
inside-expression-error], page 31.

Examples:

(splice cursor [unit-expression], page 5, nil) in

1 2 (3 4 |5 6) 7 8

⇒ 1 2 3 4 |5 6 7 8

(splice cursor [unit-expression], page 5, :forward) in

1 2 (3 4 |5 6) 7 8

⇒ 1 2 |5 6 7 8

(splice cursor [unit-expression], page 5, :backward) in

1 2 (3 4 |5 6) 7 8

⇒ 1 2 3 4| 7 8

[Generic Function]split [text.editing.expression]

cursor unit

Split the innermost [term-expression], page 30, or toplevel expression e that [term-
contains], page 32, cursor by inserting the a copy of the buffer items that make up
the closing delimiter of e before cursor and a copy of the buffer items that make up
the opening delimiter of e after cursor.

If unit is [unit-expression], page 5, e is the innermost expression that contains cursor.
If unit is [unit-toplevel-expression], page 6, e is the toplevel expression that contains
cursor. Other values of unit are not supported at the moment.

Chapter 5: Expressions 35

The return value of this function is unspecified.

After the operation, cursor resides between the buffer items that make up the two
new expressions.

When there is no such expression, signal [Class text.editing.expression|cursor-not-
inside-expression-error], page 31.

Examples:

(split cursor [unit-expression], page 5) in

(1 (2 |3) 4)

⇒ (1 (2)|(3) 4)

(split cursor [unit-toplevel-expression], page 6) in

(1 (2 |3) 4)

⇒ (1 (2))|((3) 4)

[Generic Function]join [text.editing.expression]

cursor unit

Join the innermost [term-expression], page 30, e1 and e2 that precede and follow
cursor respectively by deleting the buffer items that make up the closing delimiter of
e1 and the buffer items that make up the opening delimiter of e2.

unit must be [unit-expression], page 5, at the moment.

The return value of this function is unspecified.

After the operation, cursor resides between the buffer items that make up the two
child expressions of the joined expressions that were the last and first child of e1 and
e2 respectively.

When there is no expression either following or preceding cursor, signal [Class
text.editing.expression|no-expression-after-cursor-error], page 31, or [Class
text.editing.expression|no-expression-before-cursor-error], page 31, respectively.

Example:

(join cursor [unit-expression], page 5) in

(1 2) |(3 4)

⇒ (1 2 |3 4)

[Generic Function]eject [text.editing.expression]

cursor unit direction

Assuming an expression e (or possibly other unit as specified by unit) contains cursor,
depending on direction, move the last child of e after the end of e or move the first
child of e before the start of e.

unit must be [unit-expression], page 5, at the moment.

direction must be either :forward or :backward. If direction is :forward, move the
last child of e after the end of e. If direction is :backward, move the first child of e
before the start of e

After the operation, cursor is still contained in e.

If cursor is not contained in any expression, signal [Class text.editing.expression|cursor-
not-inside-expression-error], page 31. If the expression e does not have any children,

Chapter 5: Expressions 36

signal [Class text.editing.expression|expression-does-not-have-children-error],
page 31.

Examples:

(eject cursor [unit-expression], page 5, :forward) in

(1 2 3 4|)

⇒ (1 2 3|) 4

(eject cursor [unit-expression], page 5, :backward) in

(1 2 |3 4)

⇒ 1 (2 |3 4)

[Generic Function]absorb [text.editing.expression]

cursor unit direction

Assuming an expression e contains cursor and a “target” expression t follows or
precedes e, depending on direction, move t into e.

• If e is a toplevel expression, try to find the target expression before or after e in
the sequence of toplevel expressions.

• If e is not toplevel expression, try to find the target expression before or after
e in the children of p, the parent of e. If there is no suitable target expression
among the children of p, repeat the process with p instead of e. In other words,
look for a suitable target expression before or after each ancestor of e proceeding
from the innermost expression (which is e) to the toplevel ancestor of e.

unit must be [unit-expression], page 5, at the moment.

direction must be either :forward or :backward. If direction is :forward, move a
“target” expression that follows e into e as the last child. If direction is :backward,
move a “target” expression that precedes e into e as the first child.

After the operation, cursor is at the same location relative to the unmodified boundary
of e as before.

If cursor is not contained in any expression, signal [Class text.editing.expression|cursor-
not-inside-expression-error], page 31. When there is no expression either following
or preceding (an ancestor of) e, signal [Class text.editing.expression|no-expression-
after-expression-error], page 31, or [Class text.editing.expression|no-expression-
before-expression-error], page 31, respectively.

Examples:

(absorb cursor [unit-expression], page 5, :forward) in

(1 2 | 3) 4

⇒ (1 2 | 3 4)

(absorb cursor [unit-expression], page 5, :backward) in

1 (|2 3 4)

⇒ (1 |2 3 4)

[Generic Function]delete-semi-line-or-expressions [text.editing.expression]

cursor direction

Chapter 5: Expressions 37

For cursor located on line l, delete to either the end of l or to the end of some
expression which starts on l so that delimiters are kept balanced.

direction controls whether to delete from cursor towards the end of the line or towards
the beginning of the line. At the moment, direction has to be :forward.

Examples:

(delete-semi-line-or-expressions cursor :forward) in

(1 |2 (3 4) 5)

⇒ (1 |)

(delete-semi-line-or-expressions cursor :forward) in

(1 |2 (3

4)

5)

⇒ (1 |

5)

(delete-semi-line-or-expressions cursor :forward) in

1 |2 (3

4)

5

⇒ 1 |

5

38

6 Equivalent Emacs Commands

6.1 Motion

Operation Unit Direction Equivalent Emacs Command
edit:move edit:item :forward forward-char (C-f)
edit:move edit:item :backward backward-char (C-b)
edit:move edit:line :forward next-line (C-n)
edit:move edit:line :backward previous-line (C-p)
edit:move edit:semi-line :forward end-of-line

edit:move edit:semi-line :backward beginning-of-line

edit:move edit:line-boundary:forward end-of-line (C-a)
edit:move edit:line-boundary:backward beginning-of-line (C-e)
edit:move edit:buffer :forward end-of-buffer

edit:move edit:buffer :backward beginning-of-buffer

edit:move edit:semi-buffer:forward end-of-buffer

edit:move edit:semi-buffer:backward beginning-of-buffer

edit:move edit:buffer-boundary:forward end-of-buffer (M->)
edit:move edit:buffer-boundary:backward beginning-of-buffer (M-<)
edit:move edit:word :forward forward-word (M-f)
edit:move edit:word :backward backward-word (M-b)
edit:move edit:sentence :forward forward-sentence (M-e)
edit:move edit:sentence :backward backward-sentence (M-a)
edit:move edit:paragraph :forward forward-paragraph (M-})
edit:move edit:paragraph :backward backward-paragraph (M-{)
edit:move edit::page :forward forward-page (C-x])
edit:move edit::page :backward backward-page (C-x [)
edit:move text.editing.expression:expression:forward forward-sexp (C-M-f)
edit:move text.editing.expression:expression:backward backward-sexp (C-M-b)
edit:move text.editing.expression:toplevel-expression:forward end-of-defun (C-M-e)
edit:move text.editing.expression:toplevel-expression:backward beginning-of-defun (C-M-a)

6.2 Deletion

Operation Unit Direction Equivalent Emacs Command
edit:delete edit:region :forward kill-region beg end

edit:delete edit:region :backward kill-region beg end

edit:delete edit:item :forward delete-char 1 (C-d)
edit:delete edit:item :backward delete-backward-char 1

(<backspace>)

edit:delete edit:line :forward kill-line (C-k)
edit:delete edit:line :backward kill-line (with 0 prefix (C-0

C-k))

edit:delete edit:semi-line :forward kill-line (C-k)

Chapter 6: Equivalent Emacs Commands 39

edit:delete edit:semi-line :backward kill-line 0 (with 0 prefix (C-

0 C-k))

edit:delete edit:buffer :forward erase-buffer

edit:delete edit:buffer :backward erase-buffer

edit:delete edit:word :forward kill-word 1 (M-d)
edit:delete edit:word :backward backward-kill-word 1

(M-<backspace>)

edit:delete edit:sentence :forward kill-sentence (M-k)
edit:delete edit:sentence :backward backward-kill-sentence (C-x

DEL)

edit:delete edit:paragraph :forward kill-paragraph 1

edit:delete edit:paragraph :backward backward-kill-paragraph 1

edit:delete text.editing.expression:expression:forward kill-sexp 1 (C-M-k)
edit:delete text.editing.expression:expression:backward backward-kill-sexp 1

(C-M-<backspace>)

Operation Equivalent Emacs Command
edit:delete-indentation delete-indentation

Operation Equivalent Emacs Command
edit:delete-trailing-whitespace delete-trailing-whitespace

6.3 Marking

Operation Unit Direction Equivalent Emacs Command
edit:mark-object edit:buffer :forward mark-whole-buffer (C-x h)
edit:mark-object edit:semi-buffer:forward mark-end-of-buffer

edit:mark-object edit:semi-buffer:backward mark-beginning-of-buffer

edit:mark-object edit:word :forward mark-word (M-@)
edit:mark-object edit:sentence :forward mark-end-of-sentence

edit:mark-object edit:sentence :backward mark-beginning-of-sentence

edit:mark-object edit:paragraph :forward mark-paragraph (M-h)
edit:mark-object edit::page :forward mark-page (C-x C-p)
edit:mark-object text.editing.expression:expression:forward mark-sexp (C-M-@)
edit:mark-object text.editing.expression:toplevel-expression:forward mark-defun (C-M-h)

6.4 Transformation

Operation Unit Direction Case Equivalent Emacs Command
edit:change-caseedit:region :forward :up upcase-region beg end (C-x C-

u)

edit:change-caseedit:region :forward :down downcase-region beg end (C-x
C-l)

edit:change-caseedit:region :forward :capital capitalize-region beg end

Chapter 6: Equivalent Emacs Commands 40

edit:change-caseedit:item :forward :up upcase-char 1 (Emacs does not
move point)

edit:change-caseedit:item :forward :down downcase-char 1 (Emacs does
not move point)

edit:change-caseedit:item :forward :capital capitalize-char 1 (Emacs does
not move point)

edit:change-caseedit:word :forward :up upcase-word 1 (M-u)
edit:change-caseedit:word :forward :down downcase-word 1 (M-l)
edit:change-caseedit:word :forward :capital capitalize-word 1 (M-c)

Operation Unit Direction Equivalent Emacs Command
edit:transpose edit:item :forward transpose-chars 1 (C-t)
edit:transpose edit:line :forward transpose-lines (C-x C-t)
edit:transpose edit:word :forward transpose-words 1 (M-t)
edit:transpose edit:sentence :forward transpose-sentences 1

edit:transpose edit:paragraph :forward transpose-paragraphs 1

edit:transpose text.editing.expression:expression:forward transpose-sexps (C-M-t)

6.5 Structure Editing

Operation Unit Equivalent Emacs Command
"not implemented" "not implemented" paredit-wrap-sexp argument

open close

Operation Unit Equivalent Emacs Command
text.editing.expression:raisetext.editing.expression:expressionparedit-raise-sexp (M-r)

Operation Unit Equivalent Emacs Command
text.editing.expression:splicetext.editing.expression:expressionparedit-splice-sexp (M-s)

Operation Unit Equivalent Emacs Command
text.editing.expression:splittext.editing.expression:expressionparedit-split-sexp (M-S)
text.editing.expression:splittext.editing.expression:toplevel-expression?

Operation Unit Equivalent Emacs Command
text.editing.expression:jointext.editing.expression:expressionparedit-join-sexp (M-J)

Operation Unit Direction Equivalent Emacs Command
text.editing.expression:ejecttext.editing.expression:expression:forward paredit-forward-barf-sexp

(C-<left>)

text.editing.expression:ejecttext.editing.expression:expression:backward paredit-backward-barf-sexp

(C-M-<right>)

Chapter 6: Equivalent Emacs Commands 41

Operation Unit Direction Equivalent Emacs Command
text.editing.expression:absorbtext.editing.expression:expression:forward paredit-forward-slurp-sexp

(C-<right>) (Emacs moves point
differently)

text.editing.expression:absorbtext.editing.expression:expression:backward paredit-backward-slurp-sexp

(C-M-<left>) (Emacs moves
point differently)

42

Concept index

B
buffer . 2
buffer unit . 5
buffer-boundary unit . 5

C
cursor . 2

D
delimiter pair . 18

E
expression . 30
expression unit . 5

I
incremental search . 23
insertion stack . 4, 9
item unit . 5

L
line unit . 6
line-boundary unit . 6

M
mark . 3
mark stack . 4

O
operation . 3
ordinary search . 23

P
page unit . 6
paragraph unit . 6
point . 3
primary site . 4, 11

R
region . 3
region unit . 6
region-or-expression unit . 6
region-or-item unit . 6

S
secondary site . 4
semi-buffer unit . 6
semi-line unit . 6
sentence unit . 6
site . 3, 11
structure editing . 18, 33

T
toplevel-expression unit . 6

U
unit . 3

W
word unit . 6

43

Function and macro and variable and type index

(
(setf backward) [text.editing] 9
(setf case-mode) [text.editing.search] 25
(setf forward) [text.editing] 9
(setf items) [text.editing] 15
(setf mark-active-p) [text.editing] 11
(setf preferred-column [text.editing)] 10

A
abort [text.editing.search] 26
abort-incremental-search

[text.editing.search] . 28
absorb [text.editing.expression] 36
activate-mark [text.editing] 16
add-match [text.editing.search] 25
add-site [text.editing] . 12
all-units [text.editing] . 8
already-in-incremental-search-error

[text.editing.search] . 24
apply-from-cursor [text.editing] 8

B
back-to-indentation [text.editing] 14
backward [text.editing] . 9
buffer . 5
buffer-boundary . 5

C
case-mode [text.editing.search] 25
change-case [text.editing] . 17
children [text.editing.expression] 32
comment [text.editing] . 18
convert-matches-to-sites

[text.editing.search] . 28
copy [text.editing] . 17
cursor-not-inside-expression-error

[text.editing.expression] 31

D
deactivate-mark [text.editing] 16
delete [text.editing] . 15
delete-delimiter-pair-or-item

[text.editing] . 21
delete-indentation [text.editing] 15
delete-semi-line-or-expressions

[text.editing.expression] 36
delete-trailing-whitespace [text.editing] . . 15
description [text.editing.search] 26
detach [text.editing] . 8

E
eject [text.editing.expression] 35
end [text.editing.search] . 26
entry-count [text.editing] . 9
exchange-point-and-mark [text.editing] 16
expression . 5
expression-at-toplevel-error

[text.editing.expression] 31
expression-does-not-have-children-error

[text.editing.expression] 31
expressions-containing-cursor

[text.editing.expression] 32
extend-query [text.editing.search] 28

F
fill-words [text.editing] . 18
find-entry [text.editing] . 9
finish [text.editing.search] 26
finish-incremental-search

[text.editing.search] . 27
fixup-whitespace [text.editing] 15
forward [text.editing] . 9

I
incremental-search [ext.editing.search] 27
initial-matches [text.editing.search] 25
innermost-expression-containing-cursor

[text.editing.expression] 33
insert-delimiter-pair [text.editing] 19
insert-item [text.editing] . 14
insert-items [text.editing] 14
insert-newline [text.editing] 14
insert-words-fill [text.editing] 18
insertion [text.editing] . 9
insertion-stack [text.editing] 11
insertion-stack-empty-error [text.editing] . . 9
item . 5
item-matches-p [text.editing.search] 26
item-transformer [text.editing] 8
items [text.editing] . 15

J
join [text.editing.expression] 35

L
line . 6
line-boundary . 6

Function and macro and variable and type index 44

M
map-expressions-containing-cursor

[text.editing.expression] 32
map-expressions-containing-cursor-using-

buffer [text.editing.expression] 32
map-items [text.editing] . 15
map-matches [text.editing.search] 25
map-sites [text.editing] . 12
mark [text.editing] . 11
mark-active-p [text.editing] 11
mark-object [text.editing] . 16
mark-or-error [text.editing] 16
mark-stack [text.editing] . 11
match [text.editing.search] 26
match-count [text.editing.search] 25
matches [text.editing.search] 25
maybe-move-past-closing-

delimiter [text.editing] . 19
most-recent-operation [text.editing] 10
move [text.editing] . 14
move-past-closing-delimiter

[text.editing] . 20
move-past-closing-delimiter-or-insert-

delimiter-pair [text.editing] 20
multiple-site-mixin [text.editing] 12

N
next [text.editing.search] . 26
next-match [text.editing.search] 29
no-closing-delimiter-error [text.editing] . . 19
no-expression-after-cursor-error

[text.editing.expression] 31
no-expression-after-expression-error

[text.editing.expression] 31
no-expression-before-cursor-error

[text.editing.expression] 31
no-expression-before-expression-error

[text.editing.expression] 31
no-next-match-error [text.editing.search] . . . 24
no-previous-match-error

[text.editing.search] . 24
not-in-incremental-search-error

[text.editing.search] . 24

O
operation-history-mixin [text.editing] 11
other-sites [text.editing] . 13
outermost-expression-containing-cursor

[text.editing.expresssion] 33

P
page . 6
paragraph . 6
perform [text.editing] . 13
point [text.editing] . 11
pop-entry [text.editing] . 10
pop-mark [text.editing] . 16
pop-site [text.editing] . 13
preferred-column [text.editing] 10
preferred-column-tracking-

mixin [text.editing] . 10
previous [text.editing.search] 26
previous-match [text.editing.search] 29
push-entry [text.editing] . 9
push-operation [text.editing] 10
push-site-at [text.editing] 12
push-site-relative [text.editing] 12

Q
query [text.editing.search] 25

R
raise [text.editing.expression] 33
range [text.editing.expression] 31
rebuild-state [text.editing.search] 25
region . 6
region-or-expression . 6
region-or-item . 6
remove-match [text.editing.search] 25
remove-other-sites [text.editing] 13
remove-site [text.editing] . 12
rotate-sites [text.editing] 13

S
search [text.editing.search] 27
search-state [text.editing.search] 27
search-state-mixin [text.editing.search] 27
semi-buffer . 6
semi-line . 6
sentence . 6
set-mark [text.editing] . 16
set-mark-or-toggle-active [text.editing] . . . 16
singular-site-error [text.editing] 12
site [text.editing] . 11
site-count [text.editing] . 12
site-search-state [text.editing.search] 26
sites [text.editing] . 12
splice [text.editing.expression] 34
split [text.editing.expression] 34
start [text.editing.search] 26
start [text.editing.search] 25
surround-with-delimiter-pair

[text.editing] . 22

Function and macro and variable and type index 45

T
top-entry [text.editing] . 9
toplevel-expression . 6
transpose [text.editing] . 17
truncate-query [text.editing.search] 28

U
uncomment [text.editing] . 18

W
word . 6

Y
yank [text.editing] . 17

	1 Introduction
	2 Concepts
	Units
	Built-in Units

	3 External Protocols
	Detach Protocol
	Unit Protocol
	Site Protocols
	Insertion Stack Protocol
	Preferred Column Protocol
	Operation History Protocol
	Site Protocol

	Buffer Protocols
	Primary Site Protocol
	Multiple Sites Protocol

	Operation Protocol
	Movement and Editing Protocol
	Motion Operations
	Insertion Operations
	Deletion Operations
	Items Functions
	Marking Operations
	Copy and Yank Operations
	Case Changing Operations
	Transposing Operations
	Filling Operations
	Commenting Operations
	Operations on Delimiter Pairs

	4 Search
	Search Concepts
	Search Dictionary
	Search Conditions
	Search State Protocol
	Match Protocol
	Site Search State Protocol
	Buffer Search State Protocol
	Ordinary Search Operations
	Incremental Search Operations

	5 Expressions
	Expressions Concepts
	Expressions Dictionary
	Expression Conditions
	Expression Node Protocol
	Expression Tree Protocol
	Expression Operations

	6 Equivalent Emacs Commands
	Motion
	Deletion
	Marking
	Transformation
	Structure Editing

	Concept index
	Function and macro and variable and type index

